Syllabus: Electromagnetic principles for Machines, electrodynamic equations and their solution, Magnetic Circuits for Machines, construction of DC machines, DC generators, DC motor, Transformers – single phase and three phase, Construction of single phase and three phase transformers, losses and efficiency, equivalent circuit, testing. Transformer connections. |
Expected outcome. After the successful completion of this course, the students will be able to 1. identify dc generator types, and appreciate their performance 2. describe the principle of operation of dc motor and select appropriate motor types for different applications. 3. analyse the performance of different types of dc motors 4. describe the principle of operation of single phase transformers 5. analyse the performance of single phase transformers 6. familiarize with the principle of operation and performance of three phase ransformers. |
Text Book 1. Bimbra P. S., Electrical Machinery, 7/e, Khanna Publishers, 2011. 2. Nagrath J. and D. P. Kothari, Theory of AC Machines, Tata McGraw Hill, 2006. Reference Books 1. Fitzgerald A. E., C. Kingsley and S. Umans, Electric Machinery, 5/e, McGraw Hill, 1990. 2. Langsdorf M. N., Theory of Alternating Current Machinery, Tata McGraw Hill, 2001. 3. Abhijith Chakrabarti, Sudipta Debnath, Electrical Machines, McGraw Hill Education, New Delhi 2015. 4. Deshpande M. V., Electrical Machines, Prentice Hall India, New Delhi, 2011. 5. Theodore Wilde, Electrical Machines, Drives and Power System, Pearson Ed. Asia 2001. |
II | DC generators – EMF equation – methods of excitation – separately and self excited – shunt, series, compound – armature reaction – effects of armature reaction – demagnetizing & cross magnetizing ampere-turns – compensating windings – interpoles – commutation – methods to improve commutation – voltage build-up – no load | 9 hours | 15% |