V | The ideal Gas Equation, Characteristic and Universal Gas constants, Deviations from ideal Gas Model: Equation of state of real substances- Vander Waals Equation of State, Berthelot, Dieterici, and Redlich-Kwong equations of state , Virial Expansion, Compressibility factor, Law of corresponding state, Compressibility charts Mixtures of ideal Gases – Mole Fraction, Mass fraction, Gravimetric and volumetric Analysis, Dalton’s Law of partial pressure, Amagat’s Laws of additive volumes, Gibbs-Dalton’s law -Equivalent Gas constant and Molecular Weight, Properties of gas mixtures: Internal Energy, Enthalpy, specific heats and Entropy, Introduction to real gas mixtures- Kay’s rule. *Introduction to ideal binary solutions, Definition of solution, ideal binary solutions and their characteristics, Deviation from ideality, Raoult’s Law, Phase diagram, Lever rule(*in this section numerical problems not ) | 11 | 20% |
VI | General Thermodynamic Relations – Combined First and Second law equations – Helmholtz and Gibb’s functions – Maxwell’s Relations, Tds Equations. The Clapeyron Equation, equations for internal energy, enthalpy and entropy, specific heats, Throttling process, Joule Thomson Coefficient, inversion curve. #Introduction to thermodynamics of chemically reacting systems, Combustion, Thermochemistry – Theoretical and Actual combustion processes- Definition and significance of equivalence ratio, enthalpy of formation , enthalpy of combustion and heating value (#in this section numerical problems not included) | 10 | 20% |